
Development of a Master of Software Assurance Reference Curriculum 1
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

Development of a Master of Software Assurance Reference
Curriculum
Nancy R. Mead, Software Engineering Institute [vita1]

Julia H. Allen, Software Engineering Institute [vita2]

Mark Ardis, Stevens Institute of Technology [vita3]

Thomas B. Hilburn, Embry-Riddle Aeronautical University [vita4]

Andrew J. Kornecki, Embry-Riddle Aeronautical University [vita5]

Rick Linger, Oak Ridge National Laboratory [vita6]
James McDonald, Monmouth University

Copyright © 2011 Carnegie Mellon University and IGI Global

2011-02-16

Modern society is deeply and irreversibly dependent on software systems of remarkable scope and
complexity in areas that are essential for preserving our way of life. The security and correct functioning
of these systems are vital. Recognizing these realities, the U. S. Department of Homeland Security (DHS)
National Cyber Security Division (NCSD) enlisted the resources of the Software Engineering Institute at
Carnegie Mellon University to develop a curriculum for a Master of Software Assurance degree program
and define transition strategies for implementation. In this article, we present an overview of the Master of
Software Assurance curriculum project, including its history, student prerequisites and outcomes, a core
body of knowledge, and a curriculum architecture from which to create such a degree program. We also
provide suggestions for implementing a Master of Software Assurance program.

Development of a Master of Software Assurance Reference Curriculum
Software has become the core component of modern products and services. It has enabled functionality,
business operations, and control systems critical to our way of life. However, software’s race to ubiquity has
outpaced security advances commensurate with software’s vital role in our society. Consequently, as our
dependence on software and software-intensive systems grows, we find ourselves exposed to an increasing
number of risks.

The complexity of software and software-intensive systems, for instance, poses inherent risk. It obscures
the essential intent of the software, masks potentially harmful uses, precludes exhaustive testing, and
introduces problems in the operation and maintenance of the software. This complexity, combined with
the interdependence of the systems we rely on, also creates a weakest link syndrome: attackers need only
take down the most vulnerable component to have far-reaching and damaging effects on the larger system.
What’s more, anywhere-to-anywhere interconnectivity makes the proliferation of malware easy and the
identification of its source hard.

The rising number of vulnerabilities compounds risk and—gives attackers even more targets of opportunity

—as shown by the rising number of incidents targeting software vulnerabilities (Bosworth, 20027).

In this environment, the threats are large and diverse, ranging from independent, unsophisticated,
opportunistic hackers to the very technically competent intruders backed by organized crime (Anderson,

20088). Malicious actors are increasingly acquiring information technology skills that allow them to
launch attacks designed to steal information for financial gain, and to disrupt, deny access to, degrade, or

1. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/230-BSI.html (Mead, Nancy)
2. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/215-BSI.html (Allen, Julia H.)
3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/1276-BSI.html (Ardis, Mark)
4. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/1274-BSI.html (Hilburn, Thomas B.)
5. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/1278-BSI.html (Kornecki, Andrew J.)
6. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/1281-BSI.html (Linger, Richard)
7. #dsy1264-BSI_Bosworth02
8. #dsy1264-BSI_Anderson08

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/230-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/215-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/1276-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/1274-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/1278-BSI.html
http://buildsecurityin.us-cert.gov/bsi/about_us/authors/1281-BSI.html
#dsy1264-BSI_Bosworth02
#dsy1264-BSI_Anderson08
#dsy1264-BSI_Anderson08

Development of a Master of Software Assurance Reference Curriculum 2
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

destroy critical information and infrastructure systems. Technical sophistication is no longer a necessary
requirement: increasingly sophisticated attack methods, thanks to the growing underground trade in
productized attack tools, no longer require great technical savvy to execute.

Recognizing these realities, the U. S. Department of Homeland Security (DHS) National Cyber Security
Division (NCSD) enlisted the resources of the Software Engineering Institute (SEI) at Carnegie Mellon
University to develop a curriculum for a Master of Software Assurance degree program and define transition
strategies for future implementation. For the purposes of this curriculum, the discipline of software assurance
is targeted specifically to the security and correct functioning of software systems, whatever their origins,
application domain, or operational environments.

As noted in our curriculum report, the need for a master’s level program in this discipline has been growing

for years (Mead, 2010a9).

• At the Knowledge Transfer Network Workshop in Paris in March 2009, cybersecurity education was
recognized as part of the information security, privacy, and assurance roadmap vision. Cybersecurity

education was also identified as one of the workshop’s lines of development (LSEC, 200910).

• A study by the nonpartisan Partnership for Public Service points out that “[President Obama’s] success
in combating these threats [to cybersecurity] and the safety of the nation will depend on implementing
a comprehensive and coordinated strategy—a goal that must include building a vibrant, highly trained
and dedicated cybersecurity workforce in this country.” The report found that “The pipeline of new
talent [with the skills to ensure the security of software systems] is inadequate. . . . only 40 percent
of CIOs [chief information officers], CISOs [chief information security officers] and IT [information
technology] hiring managers are satisfied or very satisfied with the quality of applicants applying
for federal cybersecurity jobs, and only 30 percent are satisfied or very satisfied with the number of

qualified candidates who are applying (PPS, 200911).

• The need for cybersecurity education was emphasized by The New York Times in quoting Dr. Nasir
Memon, a professor at the Polytechnic Institute on New York University: “There is a huge demand,
and a lot more schools have created programs, but to be honest, we’re still not producing enough

students” (Drew, 200912).

• Carnegie Mellon University and CERT have been active in this area for years, particularly in the

Survivability and Information Assurance (SIA) Curriculum and the Scholarship for Service13 program

(CERT, 200714). The SIA Curriculum has been provided to thousands of faculty members and other

interested parties. The Federal Cyber Service Scholarship for Service15 program offers scholarships to
applicants who attend an approved institution of higher learning and agree to work for several years in
the cybersecurity area at U.S. government organizations after graduation. The popularity and growth of
this program is an indicator of the pressing need for cybersecurity expertise (U.S. Office of Personnel

Management, 201016).

• In discussions with industry and government representatives, we have found that the need for more
capacity in cybersecurity continues to grow. Anecdotal feedback from the authors’ own students
indicates that even a single course with a cybersecurity focus enhances their positioning in the job
market. They felt they were made job offers they would not have received otherwise.

• Another aspect of the need for cybersecurity education occurs in educational institutions. Based on our
collective experience in software engineering education, we know that it can be very difficult to start a
new program or track from scratch, and we want to assist those organizations and faculty members that
wish to undertake such an endeavor. Our objective is to support their needs, while recognizing that there
are a variety of implementation strategies.

In this article, we will present an overview of the Master of Software Assurance curriculum project
(MSwA2010), and highlight the Master of Software Assurance Reference Curriculum report and its history

(Mead, et al., 2010a17). We define student prerequisites and outcomes, a core body of knowledge, and a

9. #dsy1264-BSI_Mead10a
17. #dsy1264-BSI_Mead10a

#dsy1264-BSI_Mead10a
#dsy1264-BSI_LSEC09
#dsy1264-BSI_PPS09
#dsy1264-BSI_Drew09
https://www.sfs.opm.gov/
#dsy1264-BSI_CERT07
https://www.sfs.opm.gov/
#dsy1264-BSI_USOPM10
#dsy1264-BSI_USOPM10
#dsy1264-BSI_Mead10a

Development of a Master of Software Assurance Reference Curriculum 3
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

curriculum architecture from which to create such a degree program, either as a standalone offering or as a
track within existing software engineering and computer science master’s degree programs. We also provide
suggestions for implementing a Master of Software Assurance program.

Background
As is typical in a project of this nature, a good bit of time is spent deciding how to tackle the project. The
team members all had expertise in software engineering. In addition, some had experience in curriculum
design, software assurance, or both. However, many decisions had to be made at the outset to get the project
off the ground. One of our challenges was to decide how we would operate as a team with members in
geographically dispersed locations. Not all of the team members had worked together before, but we quickly
coalesced into an effective unit. For the most part, we held weekly telecoms, and occasional face-to-face
work sessions when we needed a concentrated block of time. This worked remarkably well.

At the outset, we needed to define software assurance, examine recent curriculum and body of knowledge
efforts to see which ones would apply, identify the audience for our work, and highlight ways in which our
work was unique.

One of our first tasks was to examine existing definitions of software assurance, select a candidate definition
from the literature, and assess whether it met our needs. Initially we selected the definition of the Committee
on National Security Systems, as this definition was in wide use and used by our Department of Homeland
Security sponsor:

Software assurance (SwA) is the level of confidence that software is free from vulnerabilities, either
intentionally designed into the software or accidentally inserted at any time during its life cycle, and

that the software functions in the intended manner. (Committee on National Security Systems, 200918)

As we got further into the project, we found that the definition needed to be extended slightly for our
purposes:

Software assurance (SwA) is the application of technologies and processes to achieve a required
level of confidence that software systems and services function in the intended manner, are free
from accidental or intentional vulnerabilities, provide security capabilities appropriate to the threat

environment, and recover from intrusions and failures (Mead et al., 2010a19).

The extended definition emphasizes the importance of both technologies and processes in software
assurance, notes that computing capabilities may be acquired through services as well as new development,
acknowledges the need for correct functionality, recognizes that security capabilities must be appropriate to
the threat environment, and identifies recovery from intrusions and failures as an important capability for
organizational continuity and survival.

After examining the earlier Master of Software Engineering curriculum documents (Ardis & Ford, 198920;

Ford, 199121), we concluded that the Graduate Software Engineering 2009 (GSwE2009) Curriculum

Guidelines for Graduate Degree Programs in Software Engineering (Pyster, 200922) was the most relevant
recent curriculum work to build on. We also drew on work done by Carnegie Mellon University’s Software
Engineering Institute in support of the U.S. Department of Homeland Security Build Security In website
(DHS, 2010a). We found that both the Software Assurance Curriculum Body of Knowledge (SwACBK)

(DHS, 2010b23) and the SWEBOK (IEEE-CS, 200424) were relevant as well.

18. #dsy1264-BSI_CNSS09
19. #dsy1264-BSI_Mead10a
20. #dsy1264-BSI_Ardis89
21. #dsy1264-BSI_Ford91
22. #dsy1264-BSI_Pyster09
23. #dsy1264-BSI_DHS10b
24. #dsy1264-BSI_IEEECS04

#dsy1264-BSI_CNSS09
#dsy1264-BSI_Mead10a
#dsy1264-BSI_Ardis89
#dsy1264-BSI_Ford91
#dsy1264-BSI_Pyster09
#dsy1264-BSI_DHS10b
#dsy1264-BSI_IEEECS04

Development of a Master of Software Assurance Reference Curriculum 4
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

We then considered the audience, and quickly concluded that the primary audience for the MSwA2010
curriculum is faculty who are responsible for designing, developing, and maintaining graduate programs
that have a focus on software assurance knowledge and practices. However, we expect that the document
will be read by other educators and trainers with an interest in this area, as well as industry and government
executives and practitioners.

Finally, we identified what was different about this curriculum compared to traditional software engineering
and computer science programs. Areas of special emphasis and unique properties that distinguish this
curriculum (shown in italics) from others are the following:

• software and services

• development and acquisition

• security and correct functionality

• software analytics

• system operations

• auditable evidence

• organizational continuity

We developed the curriculum intending that it would be for practitioners, not for researchers. We also
documented some initial thoughts on undergraduate coursework in software assurance in a separate

document (Mead et al., 2010b25).

We envision that the MSwA2010 curriculum can be offered as an independent master’s degree program
in software assurance or as a track in a Master of Software Engineering (MSE) or a Master of Computer
Science degree program. This article describes how it can be incorporated as a track in an MSE degree
program if the software engineering program is based on the GSwE2009 recommendations. The independent
master’s degree program in software assurance assumes a student enters the program with an undergraduate

degree in computer science (ACM & IEEE-CS, 200826), computer engineering (IEEE-CS & ACM, 200427),

or software engineering (IEEE-CS & ACM, 200428) and supplements the content of those degrees with
appropriate prerequisite materials. For students with other backgrounds, the program incorporates the
necessary preparation in computer science and software engineering to allow them to study software
assurance.

Process Used to Develop MSwA2010 Curriculum Content
We started out with a schedule for the MSwA curriculum work and a set of activities to be performed to
arrive at the curriculum. Once we decided that the GSwE2009 document would be a primary source, we
reviewed it to see what elements could be carried over or modified for the MSwA2010 curriculum, and
where we would have to tackle unique aspects. As we proceeded with the work, we realized that we had
touched on many different areas that were seemingly unrelated. We therefore decided that it was worthwhile
to document the process we had used not only for our own benefit, but also for our readers and others
undertaking a similar activity.

We used the following seven-step process to develop the software assurance curriculum topics, practices,
knowledge units, outcomes, and core body of knowledge, with course descriptions as an eighth activity (see
Table 1).

1. Develop project guidelines We modified guidelines from the GSwE2009 report
for the MSwA2010 curriculum, which significantly
influenced the development of outcomes (step 6).

25. #dsy1264-BSI_Mead10b
26. #dsy1264-BSI_ACM08
27. #dsy1264-BSI_IEEEACM04
28. #dsy1264-BSI_IEEEACM04

#dsy1264-BSI_Mead10b
#dsy1264-BSI_ACM08
#dsy1264-BSI_IEEEACM04
#dsy1264-BSI_IEEEACM04

Development of a Master of Software Assurance Reference Curriculum 5
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

2. Identify and review sources We reviewed 29 credible and reputable sources of
software security practices in industry, government,
and academia (at the graduate and undergraduate
levels).

3. Define topics We used the guide in (Allen, 200829) as the
organizing structure for our review of sources in
Step 2 and supplemented it with our experience. This
activity resulted in nine topics.

4. Define SDLC practices and categories We evaluated sources for the topics listed above to
identify practices, which we grouped into four high
level categories.

5. Solicit external feedback We sought input, through a 3-page questionnaire,
from representatives of our target audience—
managers, practitioners, and educators.

6. Develop outcomes and core Body of Knowledge
(BoK)

We identified curriculum outcomes, influenced
by GSwE2009 and questionnaire responses. Each
outcome is a knowledge area in the BoK.

7. Compare knowledge areas to practices We performed a cursory gap analysis by comparing
the BoK knowledge areas to the SDLC practices and
categories

8. Develop course descriptions We developed course descriptions for the 9 core
courses in an MSwA program and the 7 courses that
would be added to a GSwE degree program for a
software assurance specialization.

Table 1. Software assurance curriculum development

Proposed Outcomes When a Student Graduates
We needed to focus on the proposed outcomes in order to drive the program content. The outcomes
specify the knowledge, skills, and capabilities that graduates of an MSwA program can expect to have;
correspondingly, they represent the minimum capabilities that should be expected of a software assurance
professional when they complete a master’s degree program. Our process was not sequential; rather, we
iterated on the outcomes, knowledge areas, and lifecycle practices over the course of the project.

When we solicited external feedback (step 5 in our process), we found that the MSwA2010 curriculum was
not necessarily a match for all software assurance positions. Some organizations were more concerned with
the qualifications of entry-level programmers who had not completed a master’s degree program. Others
were concerned with hands-on systems administrators. This curriculum is not a panacea, but it should help to
grow the pool of leadership talent in software assurance, in much the same way that graduates of a master of
software engineering program can be expected to become leaders in software engineering.

The primary audience for the MSwA2010 project, graduate faculty, should be prepared to teach courses
that achieve these outcomes, listed below. Software development and acquisition employers responsible for
staffing technical leadership positions in software assurance and developing increased software assurance
capabilities of their current employees should expect graduates of an MSwA program to be proficient in
capabilities described in these outcomes. The seven outcomes are grouped into two main areas—assurance
process and management and assurance product and technology. Their brief descriptions follow (Mead et al.,

2010a31).

31. #dsy1264-BSI_Mead10a

#dsy1264-BSI_Allen08
#dsy1264-BSI_Mead10a
#dsy1264-BSI_Mead10a

Development of a Master of Software Assurance Reference Curriculum 6
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

Assurance Process and Management

Assurance across life cycles:
Graduates will have the ability to incorporate assurance technologies and methods into life-cycle
processes and development models for new or evolutionary system development, and for system or
service acquisition.

Risk management:
Graduates will have the ability to perform risk analysis, trade-off assessment, and prioritization of
security measures.

Assurance assessment:
Graduates will have the ability to analyze and validate the effectiveness of assurance operations and
create auditable evidence of security measures.

Assurance management:
Graduates will have the ability to make a business case for software assurance, lead assurance efforts,
understand standards, comply with regulations, plan for business continuity, and keep current in
security technologies.

Assurance Product and Technology

System security assurance:
Graduates will have the ability to incorporate effective security technologies and methods into new
and existing systems.

System functionality assurance:
Graduates will have the ability to verify new and existing system functionality for conformance to
requirements and absence of malicious content.

System operational assurance:
Graduates will have the ability to monitor and assess system operational security and respond to new
threats.

Core Body of Knowledge
The MSwA2010 core body of knowledge (BoK) is characterized by the set of software assurance practices
that are required to support the MSwA2010 outcomes. All software assurance professionals must know these
practices to perform their jobs effectively. The MSwA2010 BoK is structured into seven knowledge areas
(corresponding to the seven outcomes), with each knowledge area subdivided into a set of knowledge units,
as shown in Table 2. The information in the table is expanded on in the MSwA2010 document (Mead, et al.,

2010a33).

The knowledge areas are defined in terms of the Bloom cognitive levels (Bloom, 195634). This taxonomy is
often used by educators to set the level of educational and learning objectives required for students engaged
in an education unit, course, or program. Bloom’s levels used are

33. #dsy1264-BSI_Mead10a
34. #dsy1264-BSI_Bloom56

#dsy1264-BSI_Mead10a
#dsy1264-BSI_Mead10a
#dsy1264-BSI_Bloom56

Development of a Master of Software Assurance Reference Curriculum 7
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

• Knowledge (K)

• Comprehension (C)

• Application (AP)

• Analysis (AN)

• Synthesis (S)

Since we were developing a curriculum for a master’s degree program, the Bloom’s levels ranged from C
through AN.

Knowledge Area Bloom Level

1.1. Software Life-Cycle
Processes

1.1.1. New development C

1.1.2. Integration, assembly, and
deployment

C

1.1.3. Operation and evolution C

1.1.4. Acquisition, supply, and
service

C

1.2. Software Assurance Processes
and Practices

1.2.1. Process and practice
assessment

AP

1. Assurance Across Life Cycles

1.2.2. Software assurance
integration into SDLC phases

AP

2.1. Risk Management Concepts

2.1.1. Types and classification C

2.1.2. Probability, impact, severity C

2.1.3. Models, processes, metrics C

2.2. Risk Management Process

2.2.1. Identification AP

2.2.2. Analysis AP

2.2.3. Planning AP

2.2.4. Monitoring and
management

AP

2.3. Software Assurance Risk
Management

2.3.1. Vulnerability and threat
identification

AP

2.3.2. Analysis of software
assurance risks

AP

2.3.3. Software assurance risk
mitigation

AP

2. Risk Management

2.3.4. Assessment of Software
Assurance Processes and Practices

AP

Development of a Master of Software Assurance Reference Curriculum 8
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

3.1. Assurance Assessment
Concepts

3.1.1. Baseline level of assurance;
allowable tolerances, if
quantitative

AP

3.1.2. Assessment methods C

3.2. Measurement for Assessing
Assurance

3.2.1. Product and process
measures by life-cycle phase

AP

3.2.2. Other performance
indicators that test for the baseline,
by life-cycle phase

AP

3.2.3. Measurement processes and
frameworks

C

3.2.4. Business survivability and
operational continuity

AP

3.3. Assurance Assessment
Process (collect and report
measures that demonstrate the
baseline)

3.3.1. Comparison of selected
measurements to the established
baseline

AP

3. Assurance Assessment

3.3.2. Identification of out-of-
tolerance variances

AP

4.1. Making the Business Case for
Assurance

4.1.1. Valuation and cost/benefit
models, cost and loss avoidance,
return on investment

AP

4.1.2. Risk analysis C

4.1.3. Compliance justification C

4.1.4. Business impact/needs
analysis

C

4.2. Managing Assurance

4.2.1. Project management across
the life cycle

C

4.2.2. Integration of other
knowledge units

AN

4.3. Compliance Considerations
for Assurance

4.3.1. Laws and regulations C

4. Assurance Management

4.3.2. Standards C

Development of a Master of Software Assurance Reference Curriculum 9
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

4.3.3. Policies C

5.1. For Newly Developed and
Acquired Software for Diverse
Applications

5.1.1. Security and safety aspect
of computer-intensive critical
infrastructure

K

5.1.2. Potential attack methods C

5.1.3. Analysis of threats to
software

AP

5.1.4. Methods of defense AP

5.2. For Diverse Operational
(Existing) Systems

5.2.1. Historic and potential
operational attack methods

C

5.2.2. Analysis of threats to
operational environments

AN

5.2.3. Designing of and plan for
access control, privileges, and
authentication

AP

5.2.4. Security methods
for physical and personnel
environments

AP

5.3. Ethics and Integrity in
Creation, Acquisition, and
Operation of Software Systems

5.3.1. Overview of ethics, code of
ethics, and legal constraints

C

5. System Security Assurance

5.3.2. Computer attack case
studies

C

6.1. Assurance Technology

6.1.1. Technology evaluation AN

6.1.2. Technology improvement AP

6.2. Assured Software
Development

6.2.1. Development methods AP

6.2.2. Quality attributes C

6.2.3. Maintenance methods AP

6.3. Assured Software Analytics

6.3.1. Systems analysis AP

6.3.2. Structural analysis AP

6. System Functionality Assurance

6.3.3. Functional analysis AP

Development of a Master of Software Assurance Reference Curriculum 10
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

6.3.4. Analysis of methods and
tools

C

6.3.5. Testing for assurance AN

6.3.6. Assurance evidence AP

6.4. Assurance in Acquisition

6.4.1. Assurance of acquired
software

AP

6.4.2. Assurance of software
services

AP

7.1. Operational Procedures

7.1.1. Business objectives C

7.1.2. Assurance procedures AP

7.1.3. Assurance training C

7.2. Operational Monitoring

7.2.1. Monitoring technology C

7.2.2. Operational evaluation AP

7.2.3. Operational maintenance AP

7.2.4. Malware analysis AP

7.3. System Control

7.3.1. Responses to adverse events AN

7. System Operational Assurance

7.3.2. Business survivability AP

Table 2. MSwA2010 core body of knowledge

MSwA2010 Curriculum Architecture
The MSwA2010 specifies an architectural description that provides a framework for organizing and
structuring master’s programs that focus on software assurance. The curriculum architecture, which was
influenced by GSwE2009, contains the following components: preparatory material, core materials, elective
materials, and a capstone experience.

Figure 1 depicts the architecture for an MSwA curriculum. The preparatory materials represent the material
which students should master before entering the program. Individual programs will determine how to
prepare students whose background falls short. The MSwA2010 outcomes and BoK identify the fundamental
skills and knowledge that all graduates of a master’s program in software assurance must possess. This is
captured in the Figure 1 row labeled MSwA Core. Where appropriate, the core curriculum will emphasize
the guidelines used to define the MSwA2010 BoK, including its dependencies on related disciplines such as
software engineering, testing, and project management. Courses that cover core content should be part of all
programs.

Development of a Master of Software Assurance Reference Curriculum 11
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

Figure 1

Electives accommodate individual students’ interests and may cover unique requirements of a program or
institution. Students may take electives to gain more depth in a core area (e.g., assurance assessment) or to
extend and broaden their knowledge in a particular application domain (e.g., financial systems).

We recommend that students demonstrate their accumulated skills and knowledge in a capstone experience,
which engages students in a realistic team project emphasizing software assurance concepts and practices.
A capstone project is ideally a practical software assurance undertaking with a real customer, possessing
actual software assurance objectives, and using best software assurance practices and tools. Students
completing the curriculum must be able to understand and appreciate the skills needed to produce assured
software in a typical software development environment. These topics should be integrated into the core
materials and perhaps could be reinforced in the elective materials. However, the presence of a capstone
project is important, as it offers students the opportunity to tackle a major project that is likely to be more
comprehensive in realistic software assurance experience than their prior course projects.

This architecture is not intended to specify course titles, course content, or course sequencing, but rather
to indicate the overall content in aggregate. Individual programs may choose the arrangement of courses,
topics, and learning activities that best suit the needs and capabilities of their institutions.

Figure 2 illustrates a Master of Software Engineering program with a specialization in Software Assurance.
As indicated in the figure, the core BoK includes knowledge areas from both the GSwE core and the MSwA
core. Since there is overlap between the two BoKs (e.g., Software Engineering Management and Assurance
Management), the required core content would be somewhat less than the sum of the two; however, the
program would still be tight and would leave little or no room for electives.

Figure 2

Course Descriptions
Once we had the curriculum architecture and the body of knowledge, we were able to develop a sample
set of course descriptions for MSwA as a standalone program, as well as courses that could be added to an
MSwE program for a software assurance specialization. The knowledge units that each course should cover
appear in parentheses by the course name.

Development of a Master of Software Assurance Reference Curriculum 12
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

MSwA Standalone Program (nine courses)
Assurance Management (2.1, 2.2, 2.3, 4.1, 4.2, 4.3)

Assurance Assessment (3.1, 3.2, 3.3, 6.4)135

System Operational Assurance (7.1, 7.2, 7.3)

System Security Assurance (5.1, 5.2, 5.3)

Assured Software Analytics (6.3)

Assured Software Development 1 (1.1, 1.2, 6.1, 6.2 [requirements])236

Assured Software Development 2 (6.1, 6.2 [specification, design])

Assured Software Development 3 (6.2 [code, test, verification, validation])

Software Assurance Capstone Experience

MSwA Courses Added to MSwE Program (seven courses)
Assurance Management (1.2, 2.1, 2.2, 2.3, 4.1, 4.2, 4.3)

System Operational Assurance (3.1, 3.2, 3.3, 6.4, 7.1, 7.2, 7.3)337

System Security Assurance (5.1, 5.2, 5.3)

Assured Software Analytics (6.3)

Assured Software Development 1 (1.1, 6.1, 6.2 [requirements, specification, design])

Assured Software Development 2 (6.2 [code, test, verification, validation])438

Software Assurance Capstone Experience

It is necessary but not sufficient to have a defined set of student prerequisites, established outcomes, a core
body of knowledge, a curriculum architecture, and course descriptions. Often the most challenging part
of putting a new program or a new track in place is implementation. The next section provides several
guidelines and recommendations for faculty members to consider when contemplating such a program.

Implementation Guidelines
We realized that schools choosing to adopt our suggested curriculum would face several challenges besides
deciding which topics to teach. In particular, schools would need to address

• planning and launching a new program

• recruiting and preparing students

• finding and training faculty

• acquiring resources

• capstone courses

For each of these issues, we offer some discussion of the problems and some advice for addressing those
problems, drawing on our experience in starting similar programs. In addition, we found several good
suggestions in the Frequently Asked Questions report published with GSwE2009 (Ardis, Lasfer, & Michael,

200939).

35. #dsy1264-BSI_footnote1
36. #dsy1264-BSI_footnote2
37. #dsy1264-BSI_footnote3
38. #dsy1264-BSI_footnote4
39. #dsy1264-BSI_Ardis09

#dsy1264-BSI_footnote1
#dsy1264-BSI_footnote2
#dsy1264-BSI_footnote3
#dsy1264-BSI_footnote4
#dsy1264-BSI_Ardis09
#dsy1264-BSI_Ardis09

Development of a Master of Software Assurance Reference Curriculum 13
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

Planning and Launching a New Program
A prerequisite for starting any successful program is a champion who will lead the effort. This might be
a faculty member, a department head, a dean, or another member of the academic community dedicated
to starting the program. In addition, it helps to have other champions from industry and government who
will support the program, perhaps by voicing support to others, hiring graduates, providing resources, and
offering projects for the capstone experience. If possible, it is advisable to form an industry advisory board
(IAB) early on to help support and shape the program.

The academic champion needs to make a convincing case for the program by preparing a business plan,
including a market study. The plan should be used to convince university colleagues and administrators that
there will be sufficient interest in the program, and that graduates will be successful in their career plans.
Competing programs should be identified, some of which may be on the same campus.

New programs need to be sold at several levels of campus administration, and even at regional levels in some
cases. For example, some states require extensive proposals for new academic programs, including details
about courses, faculty, and dedicated resources. It is often much easier to get approval to create a new track
within an existing program than it is to create a new program.

There are U.S. federal government assistance programs, such as the Scholarship for Service program that

may help (U.S. Office of Personnel Management, 201040). These programs provide some financial assistance
to students and help justify the need for new academic programs. There are also U.S. federal agencies (for
example, the National Science Foundation and the Department of Education) that provide start-up funds for
innovative educational programs.

Recruiting and Preparing Students
If you build it, they may not come. Recruitment of students needs to be a continual process. A good market
study should identify the likely areas from which to draw students. An IAB can help keep the study up to
date and provide some additional help in recruiting.

Since some of the potential students are already in the workforce, it is helpful to establish relationships with
the human resources (HR) departments of likely employers, including those that regularly recruit students
from your institution. HR departments administer benefits, such as reimbursement for tuition, and often
provide information to employees about educational opportunities. It may be possible to give in-house
presentations to local companies, arranged through their HR departments or a member of your IAB.

Local professional organizations may provide opportunities for student recruitment. Trade organizations
provide networking for local professionals and many of them have social events sponsored by local
companies. There often are opportunities to give a short presentation or set up a booth at some of these
meetings.

Most universities have professionals who help recruit students, but these individuals need to be informed
about any new program and the types of students who best fit. Developing brochures and a web presence
help to inform both internal staff and prospective students.

Some students may need help preparing for graduate study in software assurance. There are usually two
kinds of deficiencies to be addressed: knowledge deficiencies and experience deficiencies. Knowledge
deficiencies can be addressed by preparatory leveling courses, such as an overview course on software
and systems engineering, a survey course in current topics in software engineering, or a survey course on
security. Experience deficiencies can be partially overcome by internships in industry and assistantships
within the school. Special team projects in various aspects of industrial practice can be offered for cohorts
of students who lack sufficient experience (such as a project course on the use of software tools for software
development and maintenance, or a project course on procurement, integration, and testing of open source
software packages).

40. #dsy1264-BSI_USOPM10

#dsy1264-BSI_USOPM10

Development of a Master of Software Assurance Reference Curriculum 14
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

Finding and Training Faculty
There are two sources of faculty to teach in new programs of this type: (1) faculty from related areas who
have knowledge and interest in teaching software assurance and (2) experienced practitioners from industry
who are interested in teaching. The former often work in computer science academic units, but they may be
found in almost any discipline that uses computing. Although they may have good teaching skills, they may
need some help adjusting to the professional nature of the program. Some of their students will already have
considerable experience and expect to learn about the latest methods and tools. It is important for faculty to
stay current in the field. Consulting is one good way to do this.

The second type of faculty candidate (from industry) may need some help making the transition to teaching.
If they work part time as adjunct faculty, they will need to balance the demands of two jobs. If they become
full-time faculty, there may be some discomfort in taking a salary cut. In either case, it is important to ensure
they appreciate the benefits of an academic position.

It is prudent to ramp up faculty at a pace consistent with the growth of the program. This means that some
part-time faculty will be needed early on before there is enough demand to justify hiring full-time faculty.
Adjunct faculty from industry are often used for this, but also consider faculty from other academic units at
your institution.

Acquiring Resources
Hardware and software may be provided by local companies or members of the IAB. In addition, some
vendors have academic alliance programs that provide hardware or software at deep discounts. However,
there should be an annual budget allocated to acquiring and maintaining computing systems. A small
program should be able to share support staff with other programs.

Capstone Courses
Capstone courses in software assurance provide their own challenges. Fortunately, there are several models
from which to choose. One issue to resolve early on is whether the capstone course(s) will be integrated
with other courses in the curriculum. Integrated capstones provide connections to several other courses in
the curriculum, offering opportunities for students to practice skills they learn in those courses. Standalone
capstones are easier to implement because they do not have to be synchronized with the content of other
courses.

To provide a realistic setting for a capstone course, it is helpful to have real clients. Finding clients is another
recruiting activity to plan and implement each year. Another alternative is to pursue open source projects.
The community of open source developers can play the role of clients, but they usually do not have the same
level of commitment as a real client.

For more information about implementation considerations, consult the GSwE2009 FAQ Discussion

Forum.541 The Implementation/Execution forum642 specifically addresses important issues for faculty
members and institutions involved in implementing and executing a graduate program in software
engineering. Many of these issues are the same for implementing an MSwA2010 degree program.

Ways in Which Industry Can Support Software Assurance Education
There are many ways that industry can provide support, from monetary assistance to participation in
capstone projects. We describe several of these ideas as suggestions to readers from industry, and as advice
to help new programs begin to make connections with potential industry sponsors.

For degree programs targeted toward professionals, such as the MSwA2010, industry support is essential. In
addition to participating in industry advisory boards, making donations, or providing discounts on equipment

41. #dsy1264-BSI_footnote5
42. #dsy1264-BSI_footnote6

#dsy1264-BSI_footnote5
#dsy1264-BSI_footnote6

Development of a Master of Software Assurance Reference Curriculum 15
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

and software, there are a number of other ways in which industry can contribute towards advancing this new
discipline. These include

• encouraging employees to work with universities as adjunct faculty or guest lecturers—This can enrich
both the industry organization and the university program.

• sponsoring and speaking at faculty development workshops—It’s important to provide faculty
development workshops for those who wish to teach a new discipline. However, the cost of such
workshops can be significant. Industry could assist with the cost, help to shape the material, and provide
guest speakers.

• providing grants to help develop new degree programs—Implementing new degree programs is very
expensive, and assistance with some of the development costs could help get a new program off the
ground.

• providing scholarships and summer internships to students in these programs—This is a good way to
ensure that graduates can hit the ground running once they complete their degree program.

• providing support for realistic capstone projects—Industry could provide valuable support by proposing
capstone problems, acting as a client, reviewing deliverables, and/or furnishing advice about project
management, development methods, and technology.

• modifying and updating employee position descriptions to raise the bar—Many industry position
descriptions focus on low-level skills, such as ability to code in C or Java and do not highlight the
more advanced skills needed to produce assured software, such as background in risk analysis, attack
patterns, threat modeling, and secure programming and testing.

• creating an endowed chair position in software assurance—An endowed position would ensure
longevity for the program.

Conclusion and Future Plans
The work described in this article can serve as a solid foundation for developing a master’s degree program
in software assurance. But developing the curriculum is just the first step in the set of activities needed
to support Master of Software Assurance degree programs and tracks. To be successful, the curriculum
model must be available, understood by the targeted academic and industrial communities, viewed as a
key reference for software assurance curriculum development, and used to develop and modify software-
assurance-focused curricula.

The process that we used worked well, in part because many of us had worked together in previous
professional activities. However, there are certainly improvements that could be made. We did not plan as
well as we could have for external review of the work. At times we had multiple authors making updates
to the material, and coordination was sometimes a challenge. We spent a good bit of time on scope issues
because we had not foreseen the need to clearly define the scope at the outset. On the plus side, we found
that the diverse backgrounds among the authors allowed us to see different perspectives. We also found that
there was benefit to starting outreach activities prior to the publication of the curriculum and presented it at
several conferences and workshops.

During the coming year we will be involved in outreach activities. We plan to conduct faculty workshops
and work with universities that may wish to adopt aspects of this curriculum. We will also extend our work
to include considerations of software assurance specializations within other master’s degree programs, such
as Information Systems, and will further consider software assurance education needs at undergraduate
levels and also in community colleges. We hope that this curriculum will be another step along the path
of improving software assurance education and ultimately result in improvements in software systems
assurance.

References

(ACM & IEEE-CS, 2008) ACM & IEEE-CS. (2008). Computer Science
Curriculum 2008: An Interim Revision of CS 2001.

Development of a Master of Software Assurance Reference Curriculum 16
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

Computing Curriculum Series. Retrieved August 30,
2010 from http://www.acm.org//education/curricula/
ComputerScience2008.pdf

(Allen, 2008) Allen, J. H., et al. (2008). Software security
engineering: A guide for project managers. Upper
Saddle, NJ: Addison-Wesley Professional.

(Anderson, 2008) Anderson, R. J. (2008).Security Engineering: A
Guide to Building Dependable Distributed Systems,
2nd Edition. New York, N.Y. : John Wiley,

(Ardis & Ford, 1989) Ardis, M., Ford, G. (1989). 1989 SEI Report
on Graduate Software Engineering Education
(CMU/SEI-89-TR-21). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

(Ardis, Lasfer, & Michael, 2009) Ardis, M., Lasfer, K. & Michael, B. (Eds.). (2009).
Frequently asked questions on implementing
GSwE2009. Stevens Institute of Technology.
Hoboken, N.J. Retrieved August 30, 2010 from
http://www.gswe2009.org/faq/

(Bloom, 1956) Bloom, B. S. (Ed.). (1956). Taxonomy of educational
objectives: The classification of educational goals:
Handbook I, cognitive domain. New York, N.Y. :
Longman.

(Bosworth, 2002) Bosworth, S. & Kabay, M.E. (Eds.). (2002).
Computer Security Handbook. New York, N.Y.:
John Wiley.

(CERT, 2007) CERT. (2007). Survivability and Information
Assurance Curriculum. Software Engineering
Institute, Carnegie Mellon University, Retrieved
October 4, 2007, from http://www.cert.org/sia/

(Committee on National Security Systems, 2009) Committee on National Security Systems. (2009).
Instruction No. 4009, National Information
Assurance Glossary. Revised June 2009.

(DHS, 2010a) Department of Homeland Security (DHS) (2010a).
Build Security In. Retrieved August 30, 2010 from

https://buildsecurityin.us-cert.gov/bsi/home.html45

(DHS, 2010b) Department of Homeland Security (DHS) (2010b).
Software Assurance (SwA)Workforce Education
and Training Working Group. Software assurance
CBK/principles organization. Retrieved August 30,
2010 from https://buildsecurityin.us-cert.gov/swa/
wetwg.html

(Drew, 2009) Drew, C. Wanted: ‘Cyber Ninjas.’ New York
Times. Retrieved December 29, 2009 from
http://www.nytimes.com/2010/01/03/education/
edlife/03cybersecurity.html?emc=eta1

(Ford, 1991) Ford, G. (1991). 1991 SEI Report on Graduate
Software Engineering Education (CMU/SEI-91-

http://www.gswe2009.org/faq/
http://www.cert.org/sia/
../../../home.html
http://www.nytimes.com/2010/01/03/education/edlife/03cybersecurity.html?emc=eta1
http://www.nytimes.com/2010/01/03/education/edlife/03cybersecurity.html?emc=eta1

Development of a Master of Software Assurance Reference Curriculum 17
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

TR-002). Pittsburgh, PA: Software Engineering
Institute, Carnegie Mellon University.

(IEEE-CS, 2004) IEEE-CS. (2004). IEEE Computer Society.
Software Engineering Body of Knowledge
(SWEBOK). Retrieved August 30, 2010 from http://
www.computer.org/portal/web/swebok

(IEEE-CS & ACM, 2004) IEEE-CS & ACM. (2004). Software engineering
2004: Curriculum guidelines for undergraduate
degree programs in software engineering. Computing
curriculum series. Retrieved August 30, 2010 from
http://sites.computer.org/ccse/SE2004Volume.pdf

(LSEC, 2009) Leaders in Security. (2009, March). Building In ...
Information Security, Privacy And Assurance. Paper
presented at the Knowledge Transfer Network Paris
Information Security Workshop, Paris, France.

(Mead, et al., 2010a) Mead, N. R., et al. (2010a). Master of software
assurance reference curriculum (CMU/SEI-2010-
TR-005/ESD-TR-2010-005). Pittsburgh, PA:
Software Engineering Institute, Carnegie Mellon
University.

(Mead, et al., 2010b) Mead, N. R., et al. (2010b). Software Assurance
Curriculum Project Volume II: Undergraduate
Course Outlines (CMU/SEI-2010-TR-019,
ESC-TR-2010-019). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

(Partnership for Public Service, 2009) Partnership for Public Service & Booz Allen
Hamilton. (2009). Cyber IN-Security: Strengthening
the Federal Cybersecurity Workforce. Partnership
for Public Service. Retrieved July, 2009, from
http://ourpublicservice.org/OPS/publications/
viewcontentdetails.php?id=135

(Pyster, 2009) Pyster, A. (Ed.). (2009). Graduate software
engineering 2009 (GSwE2009) curriculum
guidelines for graduate degree programs in software
engineering, version 1.0. Hoboken, NJ: Stevens
Institute of Technology.

(U.S. Office of Personnel Management, 2010) U.S. Office of Personnel Management. (2010).
Federal Cyber Service: Scholarship For Service.
Retrieved February 17, 2011, from https://
www.sfs.opm.gov/

 Footnotes
1 This course is not present in the MSwA Courses Added to the MSwE program.

2 The 1.2 knowledge unit, italicized, is different in Assured Development 1 in the standalone program and
Assurance Management in the MSwA Courses Added to MSwE program.

3 The bolded knowledge units are not covered at the same Bloom’s level as in the standalone program.

http://www.computer.org/portal/web/swebok
http://www.computer.org/portal/web/swebok
http://sites.computer.org/ccse/SE2004Volume.pdf
https://www.sfs.opm.gov/
https://www.sfs.opm.gov/

Development of a Master of Software Assurance Reference Curriculum 18
ID: 1264-BSI | Version: 16 | Date: 9/29/11 3:18:30 PM

4 Condensed versions of Assured Software Development 1, 2, and 3 from the standalone program are in the
MSwE program.

5 http://www.gswe2009.org/faq/#cat5

6 http://www.gswe2009.org/faq/?tx_mmforum_pi1[action]=list_topic&tx_mmforum_pi1[fid]=8

Carnegie Mellon University and IGI Global Copyright
Copyright © Carnegie Mellon University and IGI Global.

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

1. mailto:permission@sei.cmu.edu

http://www.gswe2009.org/faq/#cat5
http://www.gswe2009.org/faq/?tx_mmforum_pi1[action]=list_topic&tx_mmforum_pi1[fid]=8
mailto:permission@sei.cmu.edu

